Supporting information for Design of a fiber-cavity iontrap for a high efficiency and high rate quantum network node

Xing-Yu Bao^{1,2}, Jin-Ming Cui^{1,2,3,⊠}, Ding Fang^{1,2}, Wei-Bin Chen^{1,2}, Jian Wang^{1,2,3}, Yun-Feng Huang^{1,2,3}, Chuan-Feng Li^{1,2,3}, Guang-Can Guo^{1,2,3}

¹ CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
 ² CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
 ³ Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
 ⁵² Corresponding Author(s): Jin-Ming Cui, jmcui@ustc.edu.cn

Graphical abstract

GraphicalAbstract content

Abstract

abstract content

Keywords

keywords content

Coupling between ion and fiber cavity

A common ion-cavity system can be described by the parameters (g, κ, γ) , where g is the coherent interaction rate between the particle and cavity, κ is the HWHM (half-width half-maximum) of the cavity transmission line (intracavity field decay at a rate 2κ), and γ is the FWHM (full-width half-maximum) of the spontaneous line (spontaneous decay at a rate γ).

Note that

$$\kappa = \frac{2\pi\delta\nu}{2} \approx \frac{c[2 - (1 - \mathcal{L}_{\rm c})(\mathcal{R}_l + \mathcal{R}_r)]}{4n_c L},\tag{1}$$

where $\delta\nu$ is the FWHM frequency of the cavity transmission line, \mathcal{L}_c is the single-pass effective cavity loss, L is the cavity length, n_c is the refractive index of the cavity, and \mathcal{R}_l and \mathcal{R}_r are the reflectivity of the left and right cavity mirrors, respectively. In this equation, $[2 - (1 - \mathcal{L}_c)(\mathcal{R}_1 + \mathcal{R}_r)]$ represents an approximate round-trip loss, and this approximation only holds when the cavity loss \mathcal{L}_c is very small and the reflectivity of the mirror \mathcal{R}_l or \mathcal{R}_r is very large.

It is worth noting that the intensity of a single reflection is affected by the clipping loss because the size of the cavity surface of the fiber cavity is finite. The clipping loss is defined as

$$\mathcal{L}_{\rm cl} = \exp\left(-\frac{D^2}{2w_{\rm m}^2}\right),\tag{2}$$

where $w_{\rm m}$ is the radius of the cavity mode at the position of the fiber surface, and D is the diameter of the effective reflective surface.

The coupling coefficient g is evaluated by

$$g = \frac{\mu_{\rm d} E}{\hbar},\tag{3}$$

where μ_d is the electric dipole moment of the particle and *E* is the electric field strength of a single photon at the position of the particle. In general, the single-photon electric field intensity is

$$E = \sqrt{\frac{\hbar\omega}{2\epsilon_0 V}} \psi(\vec{r_a}),\tag{4}$$

where $V = \pi w_0^2 L/4$ is the modal volume, w_0 is the waist radius, \vec{r}_a is the position of the ion and $\psi(\vec{r})$ is the normalized cavity mode distribution where $\max_{\vec{r}} |\psi(\vec{r})| = 1$. Using the Gaussian mode to approximate the cavity mode, the size of the beam waist satisfies $w_0^2 = z_0 \lambda / \pi$, where z_0 is the Rayleigh length and λ is the wavelength.

Define the single-atom cooperativity parameter $C_1 = g^2/\kappa\gamma$. Then, the quantum efficiency of single-photon sources η_q in the bad cavity regime ($\kappa \gg g^2/\kappa \gg \gamma$) is given by

$$\eta_{q} = \frac{2C_{1}}{2C_{1}+1}.$$
(5)

In the strong regime $(g \gg \kappa, \gamma)$, the quantum efficiency of single-photon sources η_q is given by

$$\eta_{\mathbf{q}} = \frac{2C_1}{2C_1 + 1} \frac{2\kappa}{2\kappa + \gamma}.$$
(6)

2

By changing the structure of the cavity, we can change the values of g and κ and thus achieve Purcell enhancement.

 κ in the above equation contains many additional transmission channels and loss channels, while the available single photons are only transmitted in a specific transmission channel. Therefore, it is necessary to consider the percentage of transmission in the total channels, that is,

$$\eta_{\rm t} = \frac{\mathcal{T}_o}{2 - (1 - \mathcal{L}_{\rm c})(\mathcal{R}_{\rm l} + \mathcal{R}_{\rm r})},\tag{7}$$

where T_o is the transmissivity of the output channel.

In addition to η_q , the matching between cavity modes and fiber modes also limits the overall coupling efficiency. This matching efficiency η_{fc} is given by

$$\eta_{\rm fc} = \frac{4}{\left(\frac{w_{\rm fo}}{w_{\rm m,o}} + \frac{w_{\rm m,o}}{w_{\rm f,o}}\right)^2 + \left(\frac{\pi n_{\rm f,o} w_{\rm f,o} w_{\rm m,o}}{\lambda R_{\rm o}}\right)^2},\tag{8}$$

where $n_{\rm f,o}$ is the refractive index of the output fiber, $w_{\rm f,o}$ is the waist radius of the corresponding fiber mode, $w_{\rm m,o}$ is the radius of the cavity mode at the position of the mirror of the output fiber and $R_{\rm o}$ is the radius of curvature of this mirror.

In this system, the tunable parameters are the cavity length L, coating parameters $(\mathcal{R}, \mathcal{T}, \mathcal{L})$, structure of the cavity, and type of fiber.